Dummit and Foote
Abstract Algebra, section 12.3, exercises 40-45:
MathJax TeX Test Page
40. Letting
K be the real or complex field, prove that for
A,B∈M_n(K) and
α∈K:
(a)
||A+B|| ≤ ||A|| + ||B||
(b)
||AB|| ≤ ||A|| \cdot ||B||
(c)
||αA|| = |α| \cdot ||A||
41. Let
R be the radius of convergence of the real or complex power series
G(x).
(a) Prove that if
||A|| < R then
G(A) converges.
(b) Deduce that for all matrices
A the following power series converge:
\text{sin}(A)=\sum_{k=0}^∞ (-1)^k \dfrac{A^{2k+1}}{(2k+1)!}\text{cos}(A)=\sum_{k=0}^∞(-1)^k \dfrac{A^{2k}}{(2k)!}\text{exp(A)}=\sum_{k=0}^∞\dfrac{A^k}{k!}
42. Let
P be a nonsingular
n \times n matrix, and denote the variable
t by the matrix
tI (in light of the theory of differential equations).
(a) Prove
PG(At)P^{-1}=G(PAtP^{-1})=G(PAP^{-1}t), so it suffices to consider power series for matrices in canonical form.
(b) Prove that if
A is the direct sum of matrices
A_1,...,A_m, then
G(At) is the direct sum of the matrices
G(A_1t),...,G(A_mt).
(c) Show that if
Z is the diagonal matrix with entries
z_1,...,z_n then
G(Zt) is the diagonal matrix with entries
G(z_1t),...,G(z_nt).
43. Letting
A and
B be commuting matrices, show
\text{exp}(A+B)=\text{exp}(A)\text{exp}(B).
44. Letting
λ ∈ K, show
\text{exp}(λIt+M)=e^{λt}\text{exp}(M)
45. Let
N be the
r \times r matrix with
1s on the first superdiagonal and zeros elsewhere. Show
\text{exp}(Nt)=\begin{bmatrix}1 & t & \dfrac{t^2}{2!} & \cdots & \cdots & \dfrac{t^{r-1}}{(r-1)!} \\ ~ & 1 & t & \dfrac{t^2}{2!} &~ & \vdots \\ ~ & ~ & \ddots & \ddots & \ddots & \vdots \\ ~ & ~ & ~ & \ddots & t & \dfrac{t^2}{2!} \\ ~ & ~ & ~ & ~ & 1 & t \\ ~ & ~ & ~ & ~ & ~ & 1 \end{bmatrix}Deduce that if
J is the
r \times r elementary Jordan matrix with eigenvalue
λ then
\text{exp}(Jt)=\begin{bmatrix}e^{λt} & te^{λt} & \dfrac{t^2}{2!}e^{λt} & \cdots & \cdots & \dfrac{t^{r-1}}{(r-1)!}e^{λt} \\ ~ & e^{λt} & te^{λt} & \dfrac{t^2}{2!}e^{λt} &~ & \vdots \\ ~ & ~ & \ddots & \ddots & \ddots & \vdots \\ ~ & ~ & ~ & \ddots & te^{λt} & \dfrac{t^2}{2!}e^{λt} \\ ~ & ~ & ~ & ~ & e^{λt} & te^{λt} \\ ~ & ~ & ~ & ~ & ~ & e^{λt} \end{bmatrix}
Proof: (40)(a) We have
||A+B||=\sum_{i,j}|a_{ij}+b_{ij}| ≤ (\sum_{i,j}|a_{ij}|)+(\sum_{i,j}|b_{ij}|)=||A||+||B||(b) We have
||AB||=\sum_{i,j}|\sum_{k=0}^n a_{ik}b_{kj}| ≤ \sum_{i,j} \sum_{k=0}^n |a_{ik}| \cdot |b_{kj}| ≤\sum_{i,j,i',j'} |a_{ij}| \cdot |b_{i'j'}| = (\sum_{i,j}|a_{ij}|)(\sum_{i,j}|b_{ij}|) = ||A|| \cdot ||B||(c) We have
||αA|| = \sum_{i,j}|αa_{ij}| = |α| \sum_{i,j} |a_{ij}| = |α| \cdot ||A||(41)(a)(Method due to
Project Crazy Project) For each entry
i,j entry
a_{(k)ij} of
A^k, we note that
|a_(k){ij}| ≤ ||A^k|| ≤ ||A||^k < R^k. Therefore, we note
\sum_{k=0}^N |α_ka_{(k)ij}| ≤ \sum_{k=0}^N |α_k| \cdot r^k, where
r has been chosen
||A|| < r < R. By the Cauchy-Hadamard theorem this last power series displays the same radius of convergence
R and thus converges for
r as
N approaches infinity. Thus the partial power series for
G(A) in the
i,j coordinate converges absolutely, and thus converges.
(b) Since these functions are shown to have radius of convergence
R = ∞ over
K, by the above they converge for matrices of arbitrary absolute value, i.e. for all matrices.
(42)(a) Lemma 1: Let
x_n → x and
y_n → y be convergent sequences of
m × m matrices over
K. Then
x_ny_n → xy. Proof: We see
x → x_n if and only if for any
ε > 0 we have
||x-x_N|| < ε for sufficiently large
N, since the forward is evident when the entries all converge within range of
ε/m^2, and the converse forces all entries to converge within
ε. For sufficiently large
N we have - for some asymptotically small matrices
||ε_{(N)1}||,||ε_{(N)2}|| - the result
||xy-x_Ny_N|| = ||xy-(x+ε_{(N)1})(y+ε_{(N)2})|| =||xε_{(N)2}+ε_{(N)1}y+ε_{(N)1}ε_{(N)2}|| ≤ ||x|| \cdot ||ε_{(N)2}|| + ||y|| \cdot ||ε_{(N)1}|| + ||ε_{(N)1}|| \cdot ||ε_{(N)2}||which vanishes to zero.
~\square
Now we see
PG(At)P^{-1}=(\text{lim }P)(\text{lim }G_N(At))(\text{lim }P)=\text{lim }PG_N(At)P^{-1} = \text{lim }G_N(PAtP^{-1}) = G(PAtP^{-1}) = G(PAP^{-1}t)
(b) By considering lemma 2 of 12.3.38, we see that the power series' summands may be computed in blocks, leading to independent convergences as blocks.
(c) This is simply a special case of (b).
(43) Lemma 2:
\lim_{n → ∞}\dfrac{x^n}{\lfloor n/2 \rfloor !}=0 for any real
x. Proof: When
n > x^2\lim_{n → ∞}\dfrac{x^n}{\lfloor n/2 \rfloor !} ≤ \lim_{n → ∞}x\prod_{k=1}^{\lfloor n/2 \rfloor} \dfrac{x^2}{k} = \lim_{n → ∞}x \prod_{k = 0}^{\lfloor x^2 \rfloor}\dfrac{x^2}{k} \prod_{k = \lceil x^2 \rceil}^{\lfloor n/2 \rfloor}\dfrac{x^2}{k} =x \prod_{k = 0}^{\lfloor x^2 \rfloor}\dfrac{x^2}{k} \lim_{n → ∞} \prod_{k = \lceil x^2 \rceil}^{\lfloor n/2 \rfloor}\dfrac{x^2}{k} = 0~~\square
Lemma 3: Let
x_n → x and
y_n → y be convergent sequences of
m × m matrices over
K such that
|x_n-y_n| → 0. Then
x=y. Proof: Assume
x \neq y so
|x-y| > 0. Let
|x-x_n| < |x-y|/2 - ε for
n > n_1 and some chosen
0 < ε < |x-y|/2, let
|y-y_n| < |x-y|/2 for
n > n_2, let
|x_n-y_n| < ε for
n > n_3, and choose
N > \text{max}(n_1,n_2,n_3). We have
|x-y| = |(x-x_N)+(x_N-y_N)+(y_N-y)| ≤|x-x_N|+|x_N-y_N|+|y-y_N| < |x-y|a contradiction.
~\square
Utilizing lemma 1, we have
\lim_{N → ∞}\text{exp}_n(A)\lim_{N → ∞}\text{exp}_n(B)=\lim_{N → ∞}\text{exp}_n(A)\text{exp}_n(B), so we may compare terms of the two sequences
\text{exp}_n(A)\text{exp}_n(B)=(\sum_{k=0}^n\dfrac{A^k}{k!})(\sum_{k=0}^n\dfrac{B^k}{k!})=\sum_{j=0}^n\sum_{k=0}^n\dfrac{A^jB^k}{j!~k!}=\sum_{j,k ≤ n} \dfrac{A^jB^k}{j!~k!}\text{exp}_n(A+B)=\sum_{k=0}^n \dfrac{(A+B)^k}{k!} = \sum_{k=0}^n \dfrac{\sum_{j=0}^k \dfrac{k!}{j!(k-j)!}A^jB^{k-j}}{k!} =\sum_{k=0}^n \sum_{j=0}^k \dfrac{A^jB^{k-j}}{j!(k-j)!} = \sum_{j+k ≤ n}\dfrac{A^jB^k}{j!~k!}
and then compare their differences (without loss of generality assume
||A|| ≤ ||B||)
|\text{exp}_n(A+B)-\text{exp}_n(A)\text{exp}_n(B)| = |\sum_{j,k ≤ n < j+k}\dfrac{A^jB^k}{j!~k!}| ≤ \sum_{j,k ≤ n < j+k} \dfrac{||A||^j||B||^k}{j!~k!} ≤\dfrac{n^2||B||^{2n}}{\lfloor n/2 \rfloor !} = \dfrac{||B||^2 \prod_{k=2}^n\dfrac{k^2||B||^{2k}}{(k-1)^2||B||^{2k-2}}}{\lfloor n/2 \rfloor !} ≤ ||B||^2\dfrac{(4||B||^2)^{n-1}}{\lfloor n/2 \rfloor !}When
4||B||^2 < 1 we clearly have the above vanishing to zero as
n approaches infinity, so assume
4||B||^2 ≥ 1||B||^2\dfrac{(4||B||^2)^{n-1}}{\lfloor n/2 \rfloor !} ≤ ||B||^2\dfrac{(4||B||^2)^n}{\lfloor n/2 \rfloor !}and by lemma 2, the term still tends toward
0. Thus by lemma 3 we conclude
\text{exp}(A+B)=\text{exp}(A)\text{exp}(B).
(44) This is clear from the fact
\text{exp}(λt) = e^{λt}, the ring isomorphism between
K and matrices
KI, and the preceding exercise.
(45) The first part is clear from the fact that
N^k is the matrix with
1s along the
k^{th} superdiagonal (observable most easily by induction from the linear transformation form of
N), and since
N^r = 0, we have
\text{exp}(Nt)=\text{exp}_r(Nt) is the matrix described above. The second part is clear from the observation in (44) with
M=Nt coupled with the first part.
~\square