Proof: Let $A=\{a_1,...,a_n\}$ generate $N$, and let $B=\{b_1,...,b_m\}$ be such that $\overline{B}$ generates $M/N$. We claim $A \cup B$ generates $M$. Note that for an arbitrary element $m∈M$ we have $\overline{m}=\overline{r_1b_1+...+r_mb_m}$ for some $r_i∈R$ so that $m=r_1b_1+...+r_mb_m+n$ for some $n∈N$, so that $m=r_1b_1+...+r_mb_m+s_1a_1+...+s_na_n$ for some $s_i∈R$, and now $M$ is generated by $A \cup B$.$~\square$
No comments:
Post a Comment