Proof: Since there is a unique representation for r∈R and m∈M we may define the action of R on M from their mutual bases' actions to obtain rm = (z_1σ+z_2)(a,b) = (z_1a+z_2a,2z_1a-z_1b+z_2b). Note that σ(σ(a,b)) = (a,b) so that it satisfies action associativity.
Observe(a,b) \wedge (c,d) = ( (a,0)+(0,b) ) \wedge ( (c,0) + (0,d) ) = (ad+bc)(e_1 \wedge e_2)so that \bigwedge^2 M is generated by e_1 \wedge e_2 as an R-module. As well, we have σ(e_1 \wedge e_2) = (σe_1) \wedge e_2 = (e_1+2e_2) \wedge e_2 = e_1 \wedge e_2 and σ(e_1 \wedge e_2) = e_1 \wedge (σe_2) = e_1 \wedge -e_2 = -(e_1 \wedge e_2) so that (z_1σ+z_2)(e_1 \wedge e_2) = (\overline{z_1+z_2})(e_1 \wedge e_2) where the overline denotes reduction modulo 2, implying \bigwedge^2 M is either of order 1 or 2. To prove the latter, we shall construct a bilinear alternating form φ on M such that φ(e_1,e_2) \neq 0.
First, define ψ : R → \mathbb{Z}/2\mathbb{Z} by ψ(z_1σ+z_2)=\overline{z_1+z_2} and prove it is a ring homomorphismψ(z_1σ+z_2+z_1'σ+z_2')=\overline{z_1+z_2+z_1'+z_2'}=ψ(z_1σ+z_2)+ψ(z_1'σ+z_2')ψ((z_1σ+z_2)(z_1'σ+z_2'))=ψ((z_1z_2'+z_2z_1')σ+(z_1z_1'+z_2z_2'))=\overline{z_1z_2'+z_2z_1'+z_1z_1'+z_2z_2'}=\overline{(z_1+z_2)(z_1'+z_2')}=ψ(z_1σ+z_2)ψ(z_1'σ+z_2')Now define φ : M × M → \mathbb{Z}/2\mathbb{Z} by φ((a,b),(c,d))=ψ(ad-bc). It alternates and is 1 on (e_1,e_2) so all that remains to show is that it is bilinear by being additive in its componentsφ((a,b)+(a',b'),(c,d))=ψ((a+a')d-(b+b')c))=ψ(ad-bc)+ψ(a'd-b'c)=φ((a,b),(c,d))+φ((a',b'),(c,d))and linear over Rφ((z_1σ+z_2)(a,b),(c,d))=φ((z_1a+z_2a,2z_1a+z_2b-z_1b),(c,d))=\overline{z_1ad+z_1bc+z_2ad-z_2bc}=\overline{z_1ad-z_1bc+z_2ad-z_2bc}=\overline{z_1(ad-bc)+z_2(ad-bc)}=(z_1σ+z_2)φ((a,b),(c,d))~\square