Loading [MathJax]/jax/output/HTML-CSS/jax.js

Thursday, April 25, 2013

A Ring of Homomorphisms (7.1.30)

Dummit and Foote Abstract Algebra, section 7.1, exercise 30:

MathJax TeX Test Page Let A=Z×Z×Z... be the direct product of copies of Z indexed by positive integers and let R be the ring of homomorphisms from A to itself. Let φ be the element of R defined by φ(a1,a2,a3,...)=(a2,a3,...). Let ψ be the element of R defined by ψ(a1,a2,a3,...)=(0,a1,a2,a3,...).
(a) Prove φψ=1ψφ.
(b) Exhibit infinitely many right inverses for φ.
(c) Find a nonzero πR such that φπ=0πφ.
(d) Prove λR (λφ=0).

Proof: (a)(φψ)(a1,a2,a3,...)=φ(ψ(a1,a2,a3,...))=φ(0,a1,a2,...)=(a1,a2,a3,...)(b) Let π be the homomorphism defined in part (c). We claim πn+ψ is a right inverse for any nZ+. We have φ(πn+ψ)=φππn1+φψ=φψ=1, so now it suffices to prove πn+ψπm+ψ for any mn: πn+ψ=πm+ψπn=πmπn(1,0,...)=πm(1,0,...)(2n,0,...)=(2m,0,...)n=m(c) Let π be defined by π(a1,a2,a3,...)=(2a1,0,0,...). Prove it is a homomorphism: π((a1,a2,...)+(b1,b2,...))=π((a1+b1,a2+b2,...)=(2(a1+b1),0,...)=(2a1,0,...)+(2b1,0,...)=π(a1,a2,...)+π(b1,b2,...). We have (φπ)(a1,a2,...)=φ(π(a1,a2,))=φ(2a1,0,...)=(0,0,...), so that φπ=0. Now, (πφ)(0,1,0,0,...)=(2,0,0,...), so that πφ0.
(d) By exercise 28(b), since φ has ψ a right inverse, φ is not a right zero divisor. 

No comments:

Post a Comment