(a) Prove φψ=1≠ψφ.
(b) Exhibit infinitely many right inverses for φ.
(c) Find a nonzero π∈R such that φπ=0≠πφ.
(d) Prove ∄λ∈R (λφ=0).
Proof: (a)(φψ)(a1,a2,a3,...)=φ(ψ(a1,a2,a3,...))=φ(0,a1,a2,...)=(a1,a2,a3,...)(b) Let π be the homomorphism defined in part (c). We claim πn+ψ is a right inverse for any n∈Z+. We have φ(πn+ψ)=φππn−1+φψ=φψ=1, so now it suffices to prove πn+ψ≠πm+ψ for any m≠n: πn+ψ=πm+ψ⇒πn=πm⇒πn(1,0,...)=πm(1,0,...)⇒(2n,0,...)=(2m,0,...)⇒n=m(c) Let π be defined by π(a1,a2,a3,...)=(2a1,0,0,...). Prove it is a homomorphism: π((a1,a2,...)+(b1,b2,...))=π((a1+b1,a2+b2,...)=(2(a1+b1),0,...)=(2a1,0,...)+(2b1,0,...)=π(a1,a2,...)+π(b1,b2,...). We have (φπ)(a1,a2,...)=φ(π(a1,a2,))=φ(2a1,0,...)=(0,0,...), so that φπ=0. Now, (πφ)(0,1,0,0,...)=(2,0,0,...), so that πφ≠0.
(d) By exercise 28(b), since φ has ψ a right inverse, φ is not a right zero divisor. ◻
No comments:
Post a Comment