Proof: (⇐)v′⊗v=v′⊗av′=av′⊗v′=v⊗v′
(⇒) We may assume V has a basis {ei}i∈I.
Let v=∑j∈Jfjej and v′=∑j∈Jf′jej for appropriate, finite J⊆I. Let W=∑j∈JFej, so that W≅Fn for some finite n.
Now, v⊗v′=v⊗∑j∈Jf′jej=∑j∈Jv⊗f′jej=∑j∈Jf′jv⊗ej, and similarly v′⊗v=∑j∈Jfjv′⊗ej. We have v⊗v′,v′⊗v∈W⊗W≅Fn⊗Fn and by 10.4.10(a) we have f′jv=fjv′ for all j∈J and since v,v′≠0 we may say v=(f′−1jfj)v′.
No comments:
Post a Comment