Loading [MathJax]/jax/output/HTML-CSS/jax.js

Tuesday, June 4, 2013

R-Module Homomorphisms from Free Modules (10.3.13)

Dummit and Foote Abstract Algebra, section 10.3, exercise 13:

MathJax TeX Test Page Let R be a commutative ring. Prove HomR(Rn,R)Rn as R-modules.

Proof: Define ψ:HomR(Rn,R)Rn by φ(φ(e1),...,φ(en)). We have ψ(φ1+rφ2)=((φ1+rφ2)(e1),...,(φ1+rφ2)(en))=(φ1(e1),...,φ1(en))+r(φ2(e1),...,φ2(en))=ψ(φ1)+rψ(φ2)so ψ is a homomorphism of R-modules. If ψ(φ)=(0,...,0), then for arbitrary r=(r1,...,rn)=r1e1+...+rnenRn we have φ(r)=r1φ(e1)+...+rnφ(en)=0 so that φ=0 and now ψ is injective. Again for arbitrary rRn, define φHomR(Rn,R) by φ(ei)=ri and extending linearly, so that ψ(φ)=r and now ψ is surjective and an isomorphism of R-modules. 

No comments:

Post a Comment