Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, March 30, 2013

Characteristicity of the Central Upper Series (6.1.1)

Dummit and Foote Abstract Algebra, section 6.1, exercise 1: MathJax TeX Test Page

Prove Zi(G) char G for all i.

Proof: Lemma 1: Z(G) char G for any group G. Proof: For any x,yG, φAut(G) we have:φ(x)Z(G)φ(x)φ(y)=φ(x)φ(y)φ(xy)=φ(yx)xy=yxxZ(G)   
Lemma 2: For K char G and φAut(G) and letting the bar notation denote passage into G/K, we have ψAut(ˉG) where ψ:ˉx¯φ(x). Proof:
Well-defined: ˉx=ˉyy1xKφ(y1x)K¯φ(x)=¯φ(y)ψ(ˉx)=ψ(ˉy).
Homomorphic: ψ(¯xy)=¯φ(xy)=¯φ(x)φ(y)=¯φ(x) ¯φ(y)=ψ(¯x)ψ(¯y).
Injective: ψ(¯x)=ψ(¯y)¯φ(x)=¯φ(y)¯φ(y1x)=1φ(y1x)Ky1xK¯x=¯y.
Surjective: For any ¯x, let y be the preimage of x by φ. By way of construction, ψ(¯y)=¯x.

Returning to the main result, we shall proceed by induction. Clearly Z0(G) char G, so apply the inductive hypothesis on i. Let the overbar denote passage into G/Zi1. Since ¯Zi(G)=Z(¯G), by lemma 1 we have ¯Zi(G) char ¯G. Let φ be any automorphism of G, and let ψ be the automorphism of ¯G afforded by φ. Complete the proof: xZi(G)¯x¯Zi(G)ψ(¯x)¯Zi(G)¯φ(x)¯Zi(G)φ(x)Zi(G).

No comments:

Post a Comment