Processing math: 100%

Thursday, March 14, 2013

The pth-Power Map (5.2.7)

Dummit and Foote Abstract Algebra, section 5.2, exercise 7: MathJax TeX Test Page

Let p be a prime and let A=<x1>×<x2>×...×<xn> be an abelian p-group, where |xi|=pαi>1 for all i. Define the pth-power map: φ:AA   by   φ:xxp. (a) Prove that φ is a homomorphism.
(b) Describe the image and the kernel of φ in terms of the given generators.
(c) Prove ker φA/im φEpn.

Proof: (a) φ(ab)=(ab)p=apbp=φ(a)φ(b),a,bA.

(b) We can see that <xp1>×<xp2>×...×<xpn>≤im φ, so we must prove the reverse inclusion. Let aim φ, so rewrite a thus: a=(ap1,ap2,...,apn)=([xb11]p,[xb22]p,...,[xbnn]p) =([xp1]b1,[xp2]b2,...,[xpn]bn)∈<xp1>×<xp2>×...×<xpn>Therefore, <xp1>×<xp2>×...×<xpn>=im φ.

Note that <(x1)pα11>×<(x2)pα21>×...×<(xn)pαn1>≤ker φ. Prove the reverse inclusion:if cker φ,then c=(c1,c2,...,cn)=(xm11,xm22,...,xmnn)Where (xmii)p=xmipi=1 for all i, so that pαimip, so pαi1mi, so xmii=((xi)pαi1)vi for some integer vi. Thus, we have <(x1)pα11>×<(x2)pα21>×...×<(xn)pαn1> =ker φ.

(c) A small result to start: If G is a finite abelian group such that for all gG, we have gp=1, then GEpn for some n. Proof: Observe G's elementary divisor decomposition. If any of its cyclic factors are not of order p, then there is an element of order neither p nor 1, a contradiction. Therefore GZnp=Epn.

Now, for any aA, we have apim φ, so for any ˉaA/im φ, we have ˉap=1, so A/im φ is an elementary abelian group. Likewise, we have kp=1 for all kker φ, so ker φ is an elementary abelian group. We have A/ker φim φ, so that |A/im φ|=|ker φ|. All that remains is proving that ker φ is of rank n. We know that each of the group factors of ker φ has an order of p, so therefore ker φ is of order pn and thus isomorphic to Epn.

No comments:

Post a Comment